Coordinated regulation of p53 apoptotic targets BAX and PUMA by SMAR1 through an identical MAR element.
نویسندگان
چکیده
How tumour suppressor p53 bifurcates cell cycle arrest and apoptosis and executes these distinct pathways is not clearly understood. We show that BAX and PUMA promoters harbour an identical MAR element and are transcriptional targets of SMAR1. On mild DNA damage, SMAR1 selectively represses BAX and PUMA through binding to the MAR independently of inducing p53 deacetylation through HDAC1. This generates an anti-apoptotic response leading to cell cycle arrest. Importantly, knockdown of SMAR1 induces apoptosis, which is abrogated in the absence of p53. Conversely, apoptotic DNA damage results in increased size and number of promyelocytic leukaemia (PML) nuclear bodies with consequent sequestration of SMAR1. This facilitates p53 acetylation and restricts SMAR1 binding to BAX and PUMA MAR leading to apoptosis. Thus, our study establishes MAR as a damage responsive cis element and SMAR1-PML crosstalk as a switch that modulates the decision between cell cycle arrest and apoptosis in response to DNA damage.
منابع مشابه
p53 Target Gene SMAR1 Is Dysregulated in Breast Cancer: Its Role in Cancer Cell Migration and Invasion
Tumor suppressor SMAR1 interacts and stabilizes p53 through phosphorylation at its serine-15 residue. We show that SMAR1 transcription is regulated by p53 through its response element present in the SMAR1 promoter. Upon Doxorubicin induced DNA damage, acetylated p53 is recruited on SMAR1 promoter that allows activation of its transcription. Once SMAR1 is induced, cell cycle arrest is observed t...
متن کاملImproving Grant Application Peer Review for the NIEHS
Tumor suppressor SMAR1 interacts and stabilizes p53 through phosphorylation at its serine-15 residue. We show that SMAR1 transcription is regulated by p53 through its response element present in the SMAR1 promoter. Upon Doxorubicin induced DNA damage, acetylated p53 is recruited on SMAR1 promoter that allows activation of its transcription. Once SMAR1 is induced, cell cycle arrest is observed t...
متن کاملRegulation of Bax activation and apoptotic response to microtubule-damaging agents by p53 transcription-dependent and -independent pathways.
Microtubule-damaging agents (MDA) are potent antineoplastic drugs that are widely used in clinical treatment for a variety of cancers. However, the precise mechanisms underlying MDA-induced cell death are largely unknown. Here, we report that both p53 and Bax are central participants in the MDA-mediated cell death machinery in HCT116 human colon cancer cells. MDA, including epothilone B analogu...
متن کاملp73 Induces apoptosis via PUMA transactivation and Bax mitochondrial translocation.
p73, an important developmental gene, shares a high sequence homology with p53 and induces both G(1) cell cycle arrest and apoptosis. However, the molecular mechanisms through which p73 induces apoptosis are unclear. We found that p73-induced apoptosis is mediated by PUMA (p53 up-regulated modulator of apoptosis) induction, which, in turn, causes Bax mitochondrial translocation and cytochrome c...
متن کاملCancer Therapeutics Insights Hsp90 Inhibitors Promote p53-Dependent Apoptosis through PUMA and Bax
Hsp90 is widely overexpressed in cancer cells and believed to be essential for the maintenance of malignant phenotypes. Targeting Hsp90 by small molecules has shown promise in solid and hematologic malignancies, which likely involves degradation of client oncoproteins in a cell-type–specific manner. In this study, we found that structurally unrelated Hsp90 inhibitors induce DNA damage and apopt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The EMBO journal
دوره 29 4 شماره
صفحات -
تاریخ انتشار 2010